Binary Search
普通版、2D版、万金油版、有重复元素版
Classic Version
每次缩小一半的查找范围,和中间值比较。大于中间值往左,小于中间值往右。通过L=mid+1 or R=mid-1改变LR边界值。
def binary_search(nums, target):
if not nums:
return None
left, right = 0, len(nums)-1
while left<=right: #小于还是小于等于?可以用1个元素debug,循环都进不去,所以这里一定要小于等于
mid=(left+right)/2
if nums[mid]<target:
left=mid+1 #必须+1, 因为还是用1个元素debug,如果数组里是5,找的是7,循环出不去
elif nums[mid]>target:
right=mid-1
else
return mid
return None //package 一般是一个名词,而且全小写、用点
//class 名词,首字母大写, upper CammelCase
//interface 名词,upper CammelCase
//method 动词, lower cammelCase
//method里的变量名, lower cammelCase
class Solution(object):
public int binarySearch(int[] array, int target) {
if (array==null) { //如果是0其实没关系 因为进不去循环,返回-1
return -1;
}
int l = 0;
int r = array.length-1;
while (l<=r) {
int mid = l+(r-l)/2; //int越过32位的overflow 可能会变成负数,可能是一个奇怪的数,不会自动变成long
if (array[mid]==target) {
return mid;
}
elif (array[mid]<target) {
left = mid+1;
}
else {
right = mid-1;
}
}
return -1;
} Time: O(logn)
2D Version
一个二维坐标可以和一维坐标联系,4*4的matrix,(2,2)代表2*4+2个元素比它小。index=row_index*m+col_index.(m: number of cols).
所以,row_index=index/m; col_index=index%m.
第一个index是0,最后一个index是n*m-1。所以初始化的left=0, right=n*m-1.
Time: O(log(n*m))
Find Closest Element
eg [1,2,5,9] target=3, index=1, number=2
错误示范
因为如果(0,1),剩两个数或者剩下一个数,都会在这里做死循环;违反了上面中的原则1,搜索空间并没有减小,因为line5的mid永远都是一个值。
不能让left和right之间没有元素,不然会让left和right来回传值, 所以while的条件必须要在left和right之中隔一个值
正确做法
Time: O(logn)
First Occurrence
如果找不到,return-1 (面试时,注意和面试官沟通,回复-1还是None)
num[mid]<target, 左半边不要了,一定在右边,可以+1(left=mid+1)
num[mid]>target, 右半边不要了,一定在左边,但是含mid(right=mid)
num[mid]=target, 虽然找到了,但也有可能不是第一个,所以right=mid
Last Occurrence
和First Occurrence的区别在
1. mid=target时往左还是往右: 右
2. Post-Processing的顺序先后:先检查右边
K Closest to Sorted Array
log(n)+k
line 35其实根本不用abs 因为既然sorted了也就知道谁大谁小了
在上面这种写法里,要先把数字自己放进去,left, number, right 三个数字这样的顺序出现在数组里,然后left、right依次左、右expand。 左边expand的条件是, - 首先左边还没过界并且result里的值还有的剩 - 其次满足接下来两个条件二选一 (1)右边到界了左边还没到 (2)左边的距离比右边的距离更小 相似的,右边expand的条件是, - 首先右边还没过界并且result里的值还有的剩 - 其次满足接下来两个条件二选一 (1)左边到界了右边还没到 (2)右边的距离比左边的距离更小
还可以这么写 看起来简单点
Smallest Element that is Larger than Target
input = ssss eeee bbbb (smaller, equal, bigger) 本质是在找bigger里面的第一个
case1: if input[m]<target('s') -> l=m or l=m+1 both ok case2: if input[m]==target('e') -> l=m or l=m+1 both ok case3: if input[m]>target('b') -> r=m 不可以-1
post-processing:先左后右
Sqrt()
找一个最接近于平方根的整数, floor
方法一:试
Time O( )
Space O(1)
方法二:binary search
if mid*mid<n: go right [mid, right]
if mid*mid>n: go left [left, mid]
if mid*mid==n: return mid
Find Peak Element
Search In Shifted Sorted Array I
First Bug Version
Pull Request有很多个版本,如果有一个version有bug,在version7发现了,快速找到这个有bug的version的第一个version
新题: 虚拟数组
给一个已排好序的正整数数组,在首尾之间,不连续的部分可以看成是漏掉了一些数。这些漏掉的数可以组成一个虚拟的数组,要求给出一个序号k,返回虚拟数组的第k个数。 比如给定原数组:[2,4,7,8,9,15],漏掉的数组成这样一个虚拟数组:[3,5,6,10,11,12,13,14]。若k=2,返回虚拟数组的第二个数“5”。
每次取数组中间位置mid的元素a[mid],跟数组最右边的元素a[right]比较,求出k=(a[right]-a[mid])-(right-mid) 这个k值就代表从mid到right之间有多少个hole。比较k和n的大小,如果k<n就说明第n个hole在数组左半边,那么让n=n-k然后继续搜索左半边;否则的话第n个hole在数组右半边,就继续搜索右半边。直到最后left+1==right,直接返回a[right]-n就是最终要求的值
高等难度
K-th smallest in Two Sorted Arrays
1.1: 两个sorted array的median 两个array凑在一起的
1.2: 两个sorted array的第k小或者前k小的元素 方法一:可以2-pointers的方法,谁小移谁,用O(k)的时间 方法二:Binary Search 谁小删除谁 每一次搜索范围都是当前的k/2个元素 O(logk)
Closest k Element
用上面的方法来接着做 1. Binary Search to find L and R log(n) 2. 此时有了两个array,left及left的左边都可以通过当前element和target的距离,这就是所谓的array A,同理,right及right的右边都是arrayB。就成了上面的这个题 log(k)就可以搞定
Search In Unknown Sized Sorted Array
Find the end 倍增法
Binary Search
Time: O(log 2(first_bug_version))
实际工作中的binary search
任何object都可以被sorted,但是我们需要一个比较策略,比如口红可以用色号、RGB色度、16进制的数字、品牌的首字母、喜爱程度... 这些都是comparable
Generics: 范形 就像是外形看不出来色号的口红
面试时:
Clarification: - sorted? ascending?descending? - how you define your colors
Examples:过一个example
Solutions: Assumptions - xx的时候返回xx (比如不存在的时候返回-1还是null) - 如果遇到multiple该return哪个?(都可以) Input、Output: - input:int array, int target - output:int index Corner Case: - null: 没有array - empty: 有array但没元素 Algorithm: - Binary Search, 时间空间复杂度 call stack+ new出来的
Coding
回头验证space & time complexity
Test Case
要讲清楚:
退出循环的时候l和r在哪里(classic里是错开,提前一步时是)
Last updated