The two primary data structures of pandas, Series (1-dimensional) and DataFrame (2-dimensional) , handle the vast majority of typical use cases in finance, statistics, social science, and many areas of engineering. pandas is built on top of NumPy and is intended to integrate well within a scientific computing environment with many other 3rd party libraries.
在Colab怎么load数据
直接用链接读 如果header是None,自动补1234
Copy iris = 'http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
df_iris = pd . read_csv (iris, sep = ',' , header = None )
2. data上传Google drive,share link,把ID=后面的复制出来,然后用下面的
Copy file_id = '1k0ZYUdqqjPjVWCw3ElcaMMRFg6H3-Pjh'
link = 'https://drive.google.com/uc?export=download&id= {FILE_ID} '
csv_url = link . format (FILE_ID = file_id)
df_uk_rain = pd . read_csv (csv_url)
3. 在GitHub读raw data
Copy import pandas as pd
import io
import requests
url = "https://gist.githubusercontent.com/curran/a08a1080b88344b0c8a7/raw/d546eaee765268bf2f487608c537c05e22e4b221/iris.csv"
c = pd . read_csv (url)
4. 把Google drive和colab给mount过来
简单版mount 复杂版mount
Copy from google . colab import drive
drive . mount ( '/content/gdrive' )
Copy !pip install - U - q PyDrive
from pydrive . auth import GoogleAuth
from pydrive . drive import GoogleDrive
from google . colab import auth
from oauth2client . client import GoogleCredentials
auth . authenticate_user ()
gauth = GoogleAuth ()
gauth . credentials = GoogleCredentials . get_application_default ()
drive = GoogleDrive (gauth)
5. 从local读
Copy from google . colab import files
uploaded = files . upload ()
import io
import pandas as pd
df2 = pd . read_csv (io. BytesIO (uploaded[ 'uk_rain_2014.csv' ]))
df2 . head ()
如果是jupyter notebook在本地读就很简单,pd.read_csv("../data_folder/data.csv") 或者pd.read_table("xx.txt", sep=',' , header=0)就行
6. 最后如果想从colab下载处理好的df,index=False就是不要第一列的那个idx
Copy df_uk_rain . to_csv ( 'df.csv' , index = False )
from google . colab import files
files . download ( 'df.csv' )
各种数据查看和预处理
Data Exploration
Copy df_uk_rain . columns = [ 'water_year' , 'rain_octsep' , 'outflow_octsep' ,
'rain_decfeb' , 'outflow_decfeb' , 'rain_junaug' , 'outflow_junaug' ]
2. 看头、看尾
Copy df_uk_rain . head ( 10 )
df_uk_rain . tail ()
3. 看data type、有几行之类的基本信息
或者简单粗暴直接打印
Copy print ( 'Number of rows: ' + str (TV.shape[ 0 ]))
print ( 'Number of columns: ' + str (TV.shape[ 1 ]))
4. 如果想看平均值、std、25%、50%之类的,用的
还可以对这个describe做更多定义,比如只打印某几个column,打印10%, 25% 50% 75% 95%分位
Copy print (TV. drop ([ 'video_id' , 'release_year' ],axis = 1 ). describe (percentiles = [ .1 , .25 , .5 , .75 , .95 ]))
5. 打出每个column有多少数值是0
Copy print ((TV == 0 ). sum ())
如果想知道每个column的categorical feature有几种不同的,分别有多少个,可以用
Copy print (TV[ 'import_id' ]. value_counts (). reset_index ())
6. 看各种现成生成好的柱状图
Copy # pip install pandas-profiling
import pandas_profiling
pandas_profiling . ProfileReport (df)
或者还有一个df.hist()也可以画一个histogram来看一下大致分布
7. 看distribution 用sns.distplot
Copy % matplotlib inline
import matplotlib . pyplot as plt
import seaborn as sns
sns . distplot (churn_df[ 'total_intl_charge' ])
或者也可用matplotlib的hist,可以规定bin的区间、每个bin的宽度
Copy plt . hist (TV[ 'cvt_per_day' ].values, bins = range ( 0 , 15000 , 30 ), alpha = 0.5 , color = 'r' , label = 'cvt_per_day' , normed = True )
plt . legend (loc = 'upper right' )
plt . title ( 'Historgrams of cvt_per_day before data processing' )
plt . xlabel ( 'cvt_per_day' )
plt . ylabel ( 'density' )
plt . show ()
上面的操作其实也可以画log relation,只要在第一行的括号里加一句log=True
8. 看correlation
corr = df[[]].corr() sns.heatmap(corr, cmap = "YlGnBu", annot= True)
Copy from scipy . stats import pearsonr print ( pearsonr (churn_df[ 'total_day_minutes' ], churn_df[ 'number_vmail_messages' ])[ 0 ])
Check Duplication: duplicated()
duplicated()找到重复的行(所有element都一模一样的),返回的其实是True/False
然后np.where 给出其中是True的index
Copy np . where (df_uk_rain.rain_octsep. duplicated ())
如果只想check是不是某几个column里有一模一样的,那就可以指定一下
Copy df_uk_rain . iloc [ np . where (df_uk_rain[[ 'water_year' , 'rain_octsep' ]]. duplicated ())]
Remove Duplication: drop_duplicated()
Copy df_dedup = df_dup . drop_duplicates ()
Outlier
Outlier Detection: Boxplot
Interquartile Range(IQR): IQR= Upper Quantile(Q3) - Lower Quartile(Q1)
Lower Limit = Q1 - 1.5 IQR
Upper Limit = Q3 + 1.5 IQR
Copy def iqr_outlier_rm ( dt_input ):
lq , uq = np . percentile (dt_input,[ 25 , 75 ])
lower_l = lq - 1.5 * (uq - lq)
upper_l = uq + 1.5 * (uq - lq)
return dt_input [ (dt_input >= lower_l) & (dt_input <= upper_l) ]
dt_outlier_ws = iqr_outlier_rm (dt_outlier)
sns . boxplot (dt_outlier_ws,orient = 'v' )
也可以用sns的stripplot画散点图,
Copy sns . stripplot (x = 'import_id' , y = 'cvt_per_day' , data = TV, jitter = True )
plt . show ()
Missing Value
为什么需要解决missing value
Lead to wrong prediction/classification
sklearn implementations don't support data with missing values
这里说的处理都是对missing in random的处理
如果数据的missing 和数据自身相关,比如income的丢失是因为高收入,不愿意透露,所以就有了NaN这就属于meaningful missing了
怎么找missing
.isnull()给的是boolean,哪些是missing 还可以再isnull().sum()一下
.any () 只要有,就true
Copy df . isnull (). any (axis = 1 ) # check if there is a NaN in a row
df . isnull (). any (axis = 0 ) # check if there is a NaN in a column
还有些时候NA是0,那就用replace()把0替换掉就行
Copy newTV [ [ 'budget' , 'boxoffice' , 'metacritic_score' , 'star_category' , 'imdb_votes' , 'imdb_rating' ] ] = newTV [ [ 'budget' , 'boxoffice' , 'metacritic_score' , 'star_category' , 'imdb_votes' , 'imdb_rating' ] ]. replace ( 0 , np.nan)
用什么填充
Median/ Mean/ Group Mean
可以.fillna(0)
赋予一个数值
也可以.fillna(method='ffill')
把前一个人的给它
.fillna(method='bfill')
把后一个人的给它
df["preMLScore"].fillna(df["preMLScore"].median(), inplace=True)
中位数赋予
按照gender groupby一下,给gender的平均值
Copy df [ "postMLScore" ]. fillna (df. groupby ( "gender" )[ "postMLScore" ]. transform ( "mean" ), inplace = True )
Predictive Model
KNN imputation
选择有NaN的作为testing
Copy idx_with_nan = X . isnull (). any (axis = 1 )
X_with_nan = X [ idx_with_nan ]
没有NaN的作为training
Copy X_no_nan = X [ - idx_with_nan ]
然后KNN train
Copy clf = KNeighborsClassifier ( 3 , weights = 'distance' )
clf . fit (X_no_nan[[ 'age' , 'preMLScore' , 'postMLScore' ]], X_no_nan[ 'gender' ])
做填充
Copy x_imputed = clf . predict (X_with_nan[[ 'age' , 'preMLScore' , 'postMLScore' ]])
X_with_imputed = X . copy ()
X_with_imputed . loc [ idx_with_nan , 'gender' ] = x_imputed . reshape ( - 1 , 1 )
X_with_imputed
不然就删了吧,比如70%missing
df.dropna() 默认的是drop rows,相当于df.dropna(axis=0, how='any')
Copy df . dropna (how = 'all' , inplace = True ) # drop the rows that every column is NaN
df = df . reset_index (drop = True )
df . dropna (axis = 1 , how = 'all' ) # drop the column that all values are NaN
df . dropna (thresh = 5 ) # drop the rows without at least five actual value columns
index指定
series是一个维度,一维的,所以没有n*1或者1*n之说。
Copy # Series from list
s = pd . Series ([ 1 , 3 , 5 ,np.nan, 6 , 8 ], index = [ 'a' , 'b' , 'c' , 'd' , 'e' , 'f' ])
Indexing and Slicing
注意下面的区别,只有一对[]取出来的是series,不是dataframe。
Copy df1 = df_iris [ 'sepal_length' ]
print ( type (df1))
df2 = df_iris [ [ 'sepal_length' ] ]
print ( type (df2))
在df里只能使用slicing的方式来indexing,而不能[index]
Copy df3 = df_iris [ [ 'sepal_length' , 'petal_length' ] ]
print (df3. head ())
print ( type (df3))
df4 = df_iris [ 1 : 3 ]
print (df4)
print ( type (df4))
上面是合法的,但是下面的不合法
iloc或loc可以选行也可以选列,但是如果弄不清,就坚持用loc吧!
因为iloc索引的是index,有时候随着df的变化index会变,所以看起来好像不那么robust。既然是index,那么iloc的索引[beginpoint, endpoint)
Copy # selection by position, use iloc, endpoint is excluded
# iloc既能取行又能取列
df1 = df_iris . iloc [ 3 ]
print (df1)
print ( type (df1)) #series 如果[[3]]那就df
df2 = df_iris . iloc [ 3 : 5 , 0 : 2 ]
print (df2)
print ( type (df2)) #df
df3 = df_iris . iloc [ [ 1 , 2 , 4 ] , [ 0 , 2 ] ]
print (df3)
print ( type (df3)) #df
loc和iloc的区别是它 [beginpoint, endpoint], endpoint是included,另外loc只能索引column name,然后slice的方式来做行 比如下面的可以
Copy # selection by lable, use loc , endpoint is included
df1 = df_iris . loc [:, 'sepal_length' ]
print (df1. head ())
print ( type (df1)) #注意这个是series 因为只有一个[] !
df2 = df_iris . loc [ 1 : 3 , [ 'sepal_length' ] ]
print (df2. head ())
print ( type (df2))
df3 = df_iris . loc [ [ 1 , 3 ] , [ 'sepal_length' , 'petal_length' ] ]
print (df3)
slicing 不要单独套括号,但是index都套上括号,这样就不用担心series的问题了
Boolean Indexing
和np的差不多,pd也可以boolean indexing,注意这里的&是&而不是and,因为它是逻辑与,不需要位与。
Copy # boolean indexing
df1 = df_iris [ (df_iris [ 'sepal_length' ] > 6.0 ) & (df_iris . petal_length < 5.0 ) ]
print (df1)
df2 = df_iris . loc [ (df_iris [ 'sepal_length' ] > 6.0 ) & (df_iris . petal_length < 5.0 ) , [ 'sepal_width' , 'petal_width' ] ]
df2 = df2 . reset_index ()
print (df2)
df2 . index
筛选过后,可以reset_index()一下~
Useful Functions
Apply
Apply只能对df里的一行或者一列操作
line 4的list('abc')等价于['a','b','c']
Copy import numpy as np
import pandas as pd
df = pd . DataFrame (np. arange ( 12 ). reshape (( 4 , 3 )), columns = list ( 'abc' ), index = [ 'Utah' , 'Ohio' , 'Texas' , 'Oregon' ])
print (df)
def func ( col ):
return col . max () - col . min ()
# add a new column using apply
df [ 'range' ] = df . apply (func, axis = 1 )
# use lambda function
print ( 'haluo' )
print (df. apply ( lambda x : x. mean (), axis = 'index' ))
print ( 'haluo2:' )
print (df. apply ( lambda x : x. mean (), axis = 'columns' ))
# add a new column
df [ 'range' ] = df [ [ 'a' , 'b' , 'c' ] ]. apply (func, axis = 'columns' )
print (df)
# for some columns
df [ [ 'a' , 'b' ] ]. apply ( sum , axis = 0 )
Lambda
lambda function,也叫匿名函数,因为lambda不需要起名字,一次性的,用完就完了 lambda input: output, axis = 'columns'
axis=‘columns‘等价于axis=1
axis='index'等价于axis=0
Copy # use lambda function
print ( 'haluo' )
print (df. apply ( lambda x : x. mean (), axis = 'index' ))
print ( 'haluo2:' )
print (df. apply ( lambda x : x. mean (), axis = 'columns' ))
Applymap
Applymap是element-wise的操作,所以针对的是每一个element的操作
Copy df = pd . DataFrame (np. arange ( 12 ). reshape (( 4 , 3 )), columns = list ( 'abc' ), index = [ 'Utah' , 'Ohio' , 'Texas' , 'Oregon' ])
print (df. applymap ( lambda x : x ** 2 ))
Map
对series的操作,用map 比如x.strip()的功能是去空格
Copy churn_df [ 'voice_mail_plan' ] = churn_df [ 'voice_mail_plan' ]. map ( lambda x : x. strip ())
再比如,把device_ip的column替换成这个id出现的次数(简易版feature encoding)
Copy X_train [ 'n_dev_shared' ] = X_train . device_id . map (X_train.device_id. value_counts (dropna = False ))
DateTime
之后回来补吧,好像没什么好写的... 就是一个pd. to_datetime()的function
Merging
参考链接
Copy df_right = pd . DataFrame ({ 'year' :np. arange ( 1980 , 1990 ), 'rain_cn' :np. arange ( 800 , 810 )})
print (df_right)
df_right2 = pd . DataFrame ({ 'year' : [ 900 ], 'rain_cn' : [ 1800 ]})
print (df_right2)
df_right = pd . concat ([df_right, df_right2])
print (df_right)
SQL-like inner join
Copy df_join = pd . merge (df_uk_rain, df_right, left_on = 'year' ,right_on = 'year' ,how = 'inner' )
print (df_join)
SQL-like left join
Copy df_left_join = pd . merge (df_uk_rain, df_right, left_on = 'year' ,right_on = 'year' , how = 'left' ) # left_on, right_on
df_left_join . head ()
在pandas里直接写SQL
locals()指的就是这一个cell里的可见
globals()指的是这个notebook里所有的可见
可以直接在pandas里写SQL query
Copy from pandasql import sqldf
def pysqldf ( q ):
return sqldf (q, globals ())
q = '''
SELECT *
FROM df_uk_rain a LEFT JOIN df_right b
ON a.year = b.year
LIMIT 5
'''
pysqldf (q)
Grouping
参考链接
Groupby (和SQL差不多)
下面的code,取了每个decade的三个column的最大值。除了//10*10之外,也可以用floor()替代//.
Copy df_uk_rain . groupby (df_uk_rain.year // 10 * 10 ) [ 'rain_octsep' , 'outflow_octsep' , 'rain_decfeb' ] . apply ( lambda x : np. max (x, axis = 0 )). reset_index ()
如果想对多个column进行groupby,也可 as_index=False意思是不用groupby的group类别作为index
Copy df_uk_rain . groupby ([df_uk_rain.year // 10 * 10 , df_uk_rain[ 'rain_octsep' ] // 1000 * 1000 ], as_index = False ) [[ 'outflow_octsep' , 'outflow_decfeb' , 'outflow_junaug' ] ] . mean ()
还可以把上面的操作都用上 groupby+lambda+apply
下面的这行里面有一个骚操作是 np.max(x, axis = 0), 是按照行找到最大值,存成一个numpy array。这里其实输出的结果应该和上上个例子一样,不过index reset好了(从0开始)。
Copy df_uk_rain . groupby (df_uk_rain.year // 10 * 10 ) [ 'rain_octsep' , 'outflow_octsep' , 'rain_decfeb' ] . apply ( lambda x : np. max (x, axis = 0 )). reset_index ()